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:$§ The classical Stefan theory for the melting of a solid or the freezing of
B

ggﬁ a liquid is too simplistic to describe phenomena such as supercooling, in

which a liquid supports temperatures below its freezing point, or

ﬁg superheating, the analog for solids, or dendritic growth, in which simple

gﬁ shapes evolve to complicated tree-like structures. In this paper we develop a
gﬁ general theory for two-phase phenomena of this type starting from general

ii thermodynamical laws which are appropriate to a continuum and which include

contributions of energy and entropy for the interface between phases. We show

that the interfacial temperature is generally not equal to the melting

e
p)
'5& temperature, but depends in a prescribed manner on the curvature of the

3

. - interface. We describe appropriate initial-boundary-value problems, at
«§$ various levels of approximation, and deduce corresponding Liapunov functions.
st
5& . We also present a general theory of equilibria, and show that - for an

0
é& unbounded domain in isotherma'! equilibrium = there are no stable states in
1w
’f) which the bounded phase is solid and the unbounded phase supercooled liquid.
E. We show further that corresponding minimizing sequences for the free-energy
¥ are consistent with the formation of dendrites.
Eg
"
i AMS (MOS) Subject Classifications: 35K05, SOA15
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SIGNIFICANCE AND EXPLANATION

\\:é/ The classical Stefan theory for the melting of a solid or the freezing of
. a liquid is too simplistic to describe phenomena such as supercooling, in
which a liquid supports temperatures below its freezing point, or
superheatinq, the analog for solids, or dendritic growth, in which simple
shapes evolve to complicated tree-like structures. In“ihls paper—;QLGevelop%
general theory for two~phase phenomena of this type. dgfdevelop%partial
differential equations satisfied in the phase regions and free-boundary

conditions satisfied on the interface between phases, and giveggrguments which

indicate that the resulting boundary-value problems predlct the formation of

dendrites. "%‘m& 4 ”,C/rw/m— ) /ﬂfywrm/ %M
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ON THE TWO-PHASE STEFAN PROBLEM WITH
INTERFACIAL ENERGY AND ENTROPY

Morton E. Gurtin

1. Introduction.

A classical problem of mathematical physics is the Stefan problem for
the melting of a solid or the freezing of a liquid. The underlying theory,
however, is too simplistic to describe phenomena such as supercooling, in
which a liquid supports temperatures below its freezing point, or
superheating, the analogous phenomenon for solids, or dendrite formation
(cf. Figure 1), in which simple shapes, such as spheres, evolve to
complicated tree-like structures.! The past two decades have seen the
development of more general theories? for phenomena of this type, a
critical ingredient being a free-boundary condition at the solid-liquid
interface I=I(t) in which the temperature depends on the curvature of 1.
In these theories questions arise as to what are the interface conditions;-"
in fact, it is not clear which of the interface conditions are constitutive
assumptions and which follow directly from the underlying balance laws.

It is the purpose of this paper to develop a theoretical framework for
theories of this type starting from general thermodynamical laws which
are appropriate to 2 continuum a2nd which include interfacial contributions
for both energy and entropy. We do not, however, seek the broadest possible theory,
but rather, to focus our attention on the thermcdynamics and to keep the uncer-
lying relaticns transparent, we limit our discussicn te 77/ heat conductors?
to r/gid heat conductors.?

our chief assumptions - 2part from general equations of state for the

bulk and interfacial quantities - are that the interface I produce no
entropy and that the temperature be continuous across I. Among our main
results are the interface conditions

(ql'm = v[E] - vke - 2 an I,
T = ([E] - Re)/([S] - ks) on I, (1.1)
vin-n=0 on dl,

inwhich T 1s the temperature; [E], [S], and [q] are the jumps® in
energy, entropy, and heat flux across the interface; e and s are the

interfacial values of energy and entropy; &, v, and m, respectively, are,
for the interface, the sum of principal curvatures, the normal velocity, and

a unit normal vector (with sign conventicn explained in the text), e® is

\¢f. Chalmers [1564] and Dsives [ 1974] for discussions of these phenomena.

2ml!ins and Sekerka [ 1963,1964), Voronkov {1565, See also the review articles by |

Sekerks [1968,1973,1984), Chernov [ 1972), Delves [1974), and Langer {1950]. ;

cr. Rogers [1933) for a discussicn of some of tho inconsistencies in Lhe literature. ]

A future paper will discuss the effect of varying concentralion. !
Our convention for jumps and for the latent heat L is “phase 2 minus phase 1°, wilh phases Isbeled

80 that L 2 0. Thus for a solid-liquid system phase 2 would denote the liquid, and for that reason we

will often refer to phases 1 and 2, respactively. as the solid snd liquid phases. i
Sponsored by the United States Army under Contract Nos. DAAG29-80-C-0041 and
DAAG29-82-K-0002 and by the National Science rFoundation under Grant No.

DMS-840411 en e
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Figqure 1. Picture of dedritic ice crystal
(Fujioka [1978]).
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the time derivative of e following the interface; n is the outward unit
normal on the boundary of the region B occupied by the body.

The first of (1.1) is essentially the first law of thermodynamics at the
interface. The second - derived within the fully dynamical theory - is a
condition of local equilibrium expressing balance of free-energy across
the interface. The third is a contact condition for that portion of the
interface! which intersects the boundary of B; it assserts that - where
the interface meets oB - it is orthogonal to 3B or stationary.

We discuss two types of boundary conditions: an isolated boundary on
which q-n=0; an isothermal boundary on which T is constant. We show
that, for either of these boundary conditions,

Interfacial area is uniformly bounded in time (1.2)

at least when B is bounded

We also discuss the equi//ibrium theory under isothermal boundary
conditions, and define stable states as minimizers of a global free-energy.
We consider a material for which the bulk free-energies cross at a single
temperature T, and show - for bounded B - that stable states are

always single phase,? the stable phase being the phase with lower
free-energy. T, therefore represents the temperature at which a change

in stable phase occurs, and, for that reason, we refer to T, as the

transition temperature.

The question of stability for wwbounded B is far more interesting.
Here our results, expressed in terms of a solid-liquid system in
isothermal equilibrium, assert that:3
1. There are no stable states in which the bounded phase is solid and the
unbounded phase supercooled liquid.

2. Under the conditions of (1), minimizing sequences of the free-energy
are consistent with interfacial instabilities such as the formation of
complicated arrays of thin spikes, behavior indicative of genaritic growth

Next, we introduce a quasi-static model for situations in which the
interface moves slowly compared with the time scale for heat conduction.
The chief constitutive hypothesis underlying this model is that - in each
of the phases - both the bulk energy and the bulk entropy are constant. we
also assume that the conductivities k,, the interfacial energy e, and the

YHere it is tacit that 21C28.

2Here it is important to emphasize that the boundary is held at conslant temperature; two—phase
solutions sre possible when, for example, the body is isolaled and the tolal energy constrained (cf.
Section 3.3).

3in their pioneering paper of [ 1963}, Mullins snd Sekerka, working within the djnamice/ theory
described by (1.13), established the instability of the intsrface for infinitesimal perturbations of s
sphere solidifying in a supercooled melt. The assertions (1) and (2) are snalogs, within the equilibrium
theory, of the Mullins-Sekerka instability.
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interfacial entropy s are constant. Let B,(t) denote the subregion of B
occupied by phase i (i = 1,2), and let

u=T-Tn.

Then these assumptions lead to the system'

Au=0, q= -kigradu in Bi,
u=-he/(1-a&), [qIm=(L-ke}v on I, (1.3)
vmn=0 on 2I,
where
h= T"f(T")/L, a=Tys/L (1.4)

with f(-) the interfacial free-energy and L the latent heat. We are able
to establish global growth-conditions for (1.3) under the two types of
boundary conditions discussed previously. In particular, letting

=TT/, B=ell,

we show that:
(i) for an isolated boundary,

vol(B,) + Barea(l)» = 0, area(I)* < O; (1.5)
(i1) for an isothermal boundary,

Uvol(B,)* + parea(i’ < 0. (1.6)

A detalled analysis of (1.5) and (1.6) is beyond the scope of this paper.

We do, however, give a lengthy discusssion and indicate several resuits
assuming the stability of solutions as t—+eo. In particular, we give
arguments in support of the interfacial instabilities described in (1) and
(2) above. The result (1.5) seems also to indicate an instability
characterized by a solid phase whose volume tends to zero, but whose
interfacial area does not. We shall refer to this phenomenon as the

we use the following notation: grad, div, and A sre the gradient, divergence, and Laplacian
operstors; for F=F(L) snd f=f(xt), F®=dF/dt and f*=3f/3t; voi(') and ares(’) denote the
volume and sres messures.
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formation of a dendrite with null volume.

Thus far we have made no assumptions concerning the size of the
interfacial quantities. Moreover, even though the hypotheses underlying
(1.3) are strong, the theory is exact in the sense that the underlying
equations are fully compatible with the first two laws of thermodynamics.

Next, we return to the general relations (1.1), but in situations for
which interfacial energy and entropy are small. We show that to within
terms of higher order in these quantities,

[ql'm = Lv,

(1.7)
u=-hk, .

with h as defined in (1.4). The relations (1.7) are central to the modern
work on solidification.’

We discuss a model based on the interface conditions (1.7) in
conjunction with assumptions of constant specific heats and constant
conductivities. These assumptions lead to the equations

Cu =-divq, q= -kjgradu in B,
u=-he, (qi'm =Lv on I, (1.8)
vmn=0 on al.

The assumption

C,= G, | (1.9)
Is common in the literature; granted (1.9), we are able to establish the
following growth conditions for (1.8).
(1) for an isolated boundary,

{vol(Bz)'r CVum]' =0

(harea(1) - u_vol(B,) + (C/2)f(u~y, Y)* < O; o
B
(i1) for an isothermal boundary,
{harea(I) - ugvol(B,) + (C/2)f(u-uy)?)* < 0. (1.11)
B
1er. the references cited in Footnote 1 on page 1.
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Here V=vol(B); C=C/L; u, is the mean value of u; inCase (ii) u, is

the constant boundary-value of u.
A standard model for solidirication follows from (1.8) when the terms
C,u* are neglected:

Au=0, q = -kjgradu in B,
U=-hg, [gkm=Lv on I, (1.12)
vmn=0 on al.

Here, in place of (1.10) and (1.11), we have the conditions:
(1) for an isolated boundary,

vol(B,)*= 0, area(l)’ <O; (1.13)

(ii) for an isothermal boundary,

Uovol(B,» + harea(l) < 0. (1.14)

We discuss consequences of the relations (1.10) and (1.11) and of the
relations (1.13) and (1.14).

Because of space limitations, | do not discuss the reiated theory which
allows for variable concentration. As would be expected, the theary and
results are, for the most part, completely analogous to those presented
here.

| do not list any but the most basic hypotheses of smoothness, since
such hypotheses tend to obscure the main ideas, and since at this stage of
the theory they are academic: it is not at all clear what are appropriate
function spaces in which to analyze the underlying partial-differential
equations.
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PART 1. EQUILIBRIUM THEORY.

2. Assumptions. Terminology.
2.1. Constitutive assumptions.

We consider a body B consisting of two phases separated by an
interface I, and write B, for the subregion of B occupied by phase i

(i=1,2). (Cf. Figure 2). We assume that:
(A1) B 1is aclosed, regular region with
B Lounded unless stated otherwise,

(A2) the B, are closed, regular regfons w.th disjoint interiors, and with
B=-B,UB, 1-2B,ndB,,
so that B, and B, partition B.

We consider bodies whose behavior in equilibrium is described by five
fields:

E(x), the bulk -internal energy per unit volume;

S(x), the bulk entropy per unit volume;

T(x), the temperature;

e(x), the interfacial energy per unit area;

s(x), the interfacial entropy per unit area.
We assume that in each of the phase regions B; the material is governed

by constitutive equations

E=E(M), S=5(T, 2.1
with! :
S(T)=-F(T), FM=EM-T5M, (2.2) "

F.(T) being the free energy of phase i. We assume further that:
(A3) the specific heats
C(T) = E/(T) (2.3) :

are strictly positive;

he prime denotes differentiation with respeacl to temperature.
-7
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Figure 2. The phase regions B, and the interface 1.
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é,sg (A4) the free energies F(T) coincide at a wr/gue temperature T =T,
9 called the transition temperature: -

il
A =
iy e
F The latent heat L is the difference in energy between phases at the
2%: transition temperature:
) e
o and a third assumption we shall make is that L = 0; by labelling phases
il
o so that
b .
ol
_*:5.& phase 2 has higher (internal) energy at the transition temperature,
s (2.6)
; | we may, without loss in generality, write this assumption as:
e (AS) L>0. (2.7)
N A
i Then, by (2.2),, (2.4), and (2.5),
s, '
4
I So(Ty) = Sy(Ty) =L/Ty > 0. (2.8)
B
i - In view of the agreement (2.6), we shail adopt the following
* Convention. We will refer to phase 1 as the solid phase, phase 2 as the
:3, liquid phase.
p:::t _
;"a{' We do this for conventience only; the theory is equally valid for
i;'f;:.‘ lrquia-liquid systems, liquid-vapor systems, éelc.
;' ~ The next result, a direct consequence of the our assumptions, shows that
j ﬂ_« the bulk free-energies have the form shown in Figure 3.
i
~ , Properties of the bulk free-energies.
oy (1) 7he bulk free-energies are strictly concave: for T = Tos
o
Fi(T) <F(Ty) + F(TUT =T). (2.9)
L)
e (1) 7he bulk free-energies cross at T =T, Infacl,
i
T
;;Eg; FT) CFTY for T<Ty; FUTH>FLT) for THT,, (2.10)
-9
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Figure 3. Free~energles F(T) as functions of temperature T. T, is
W .
190 the transition temperature.
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(M) Let U=t =1, /nen as u-0,
F\(T) = Fo(T) = LU/T,, + O(). (2.11)

Proof. By (2.2) and (2.3),

F,(T) = - C(TV/T <O,
which implies (i). Further, (2.2), and (2.8) imply that

Fy'(Ty) = F(Ty) = L/T > 0,
which with (A4) yield (i) and (iii). O

The last re_sul't shows that the solid phase has lower free-energy at
temperatures below transition, the liquid phase has lower free-energy at

temperatures above transition. Even so, it is possible to have the liquid
phase at temperatures T <T,, or the solid phase at temperatures T > Ty,;

in the former case the liquid is supercooled; in the latter the solid is
superheated.' Generally, we will use the term superthermal to designate
either of these two situations. Precisely: phase i is superthermal at
temperature T if, for k the other phase,

F(T) <F(T).

~ We write constitutive equations for 1 analogous to those for the
individual phases. In particular, we assume that

e=e(T), s=s(1), (2.12)
s(T)=-f(T), f(T)=e(T)-Ts(T), (2.13)

and that the interfacial free-energy f(T) and the interfacial
specific-heat

c(T) = e(T) (2.14)
obey the following hypothesis for all T > O:
(A6) 1(T)>0, cM20. (2.15)

Then, arguing as above, we see that

Ict. the interesting discussion by Delves [ 1974], Section 3.2.
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it f is concave (2.16)
iy

s;,

w8 (although not necessarily strictly concave).

Y it is convenient to introduce the Gibbs functions:

"o;f’

s W(T,To) = ELT) - ToS(T),  W(T,Ty) = e(T) - T,s(T). (2.17)
g

! Clearly,

1}; FT) = W(To,Tg)  f(Tg) = w(T,,To) (2.18)
b

:‘. A In addition, we have the following less trivial

j?:i‘ Properties of the Gibbs functions.

i () For T=T,,

0 FT) CWT,TY), 0 <f(Ty) ¢ w(T,Ty). (2.19)
_ % (i1) For each fixed T, each of the Gibbs functions (2.\7). has a minimum
e

at 1=T,, Ismonotone decreasing on (0, T,); Is monotone increasing on
(Ty.o2). Moreover, for W, the minimum and monotonicity are strict.

0

wh

"’: Proof. We will establish (i) and (ii) for W, only; the proof for w is

" strictly analogous. The inequatity (2.19), follows from (2.2) and (2.9)

(with the roles of T and T, reversed). Also, by (2.2), (2.3), and (2.17),

b,

o

bk (/ATIWT,T) = (T - TCLTIT,

t::'

2. which yields (i) for W, O

i

2 Another consequence of the strict positivity of the bulk specific-heats,

T3 obtained by combining (2.2) and (2.9), is the inequality

®

:;"‘: EAT) - E(Tg)> Ty(S(T) - S(Ty)) (2.20)

L)

"

e for T=T, (2.20) expresses the strict convexity of the bulk energies as

\ functions of the corresponding bulk entropies.

u‘ \
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) 2.2. Frequently used moduli.
;'%‘.5" In this section we list constitutive moduli that are used repeatedly
e throughout the paper.

L | Modulus Section
R F*(T,) = bulk free-energy of the bounded phase

G minus the bulk free-energy of the 3.2
vt unbounded phase

3 b= - [(TVF*(Ty) - - S 32
heTyf(T/L 8.1
P a=Tys/L ~ 8.1
: M= Tul(TeWL 8.1
58

300 B=ell 8.1
b

e A=h(C,-C)-e 10.1
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g}: 3. stabinty.

et 3.1. Isothermal boundary.

i Given a state of B, that is, a temperature field T(x) and a partition

L (B,,B,) of B with interface I=2B,n3B,, the quantities’

Bt

g E(T,B,,B,) = S[E(T) + fe(T),

o i : (3.1)

oh S(T,B,.B,) = 2fS(T) + [s(T),

e B; !

BRE represent, respectively, the corresponding total energy and total

‘,i‘g, entropy.

o

;IE::t Remark. We will consider as the underlying class of temperature fields

;;;:;'3 a// functions T(x)> 0 on B with the understanding that the total energy
is +oo and the total entropy -oo if any of the integrals in (3.1) fail to

N exist. Further, many of our statements concerning such fields will be

kLol modulo a rearrangement on a set of measure zero; the measure, either

.“h}‘ volume or interfacial area, will be clear from the context.

iy :

\ . . We assume (for the remainder of the section) that

3 ,‘_&_:

}$ the boundary is held at (constant) temperature T,

Ny

o The functional

o |

B F(T,8,8,) = E(T,B,8,) - T,8(T B, B,) (3.2)

:%‘:‘&i

? then represents the total free-energy that would be “recorded” by an

1:3'5:1 experimenter not having access to the detailed temperature distribution in

';:’:‘? the interior of B. We define as stable those states of B that

N

e minimize F(T1,8,,B,). (3.3)

WG :

K58 '

5*3 Combining (3.1) and (3.2) we arrive at integrals over B, and 1 with

':.: \ integrands equal to the Gibbs functions wi(T,To) and w(T,To),

respectively. Thus, by (2.18) and (2.19), a necessary and sufficient

" " condition for a minimizer is that T :To, that I =@, and that B be

v S occupied by the phase with lower free-energy. Thus, by (2.10) and the,

5::? convention introduced in Section 2, we have the following, physically

- obvious,

34 ’

; ‘“3 "Here and in what follows, I denotes summation over i= 1,2.
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S5y Transition Theorem. Assume that 3B s held at the constant
e tempefatwe To. Then the stable states are single phase with

' temperature everywhere constant and equal to T,. IMoreover: If T,<T,,
the solid phase Is the stable phase, If Ty> Ty, the liquidphase Is the
E staple phase; If Ty =T, then both phases are stable
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3.2. Unbounded body under isothermal conditions. Interfacial
instabilities.

As we shall show in this section, the theory is more interesting when
B is unbounded. in particular, we assume that:

B /s all of space

We are, in effect, modelling a large region whose boundary is held at the
constant temperature T,, and it would therefore seem appropriate to

define stable states through (3.3). The problem with this definition is
that, since B is'unbounded, the integrals appearing in (3.1) will generally
fail to exist. However, for any partition (B,,8,) of B and temperature

field T(x) we can consider, in place of F(T,B,,B,), the approximate
free-energy Fo(T,B,,B,) obtained by replacing B, and I by their

intersections with a large ball Q. Then, in view of the discussion leading
to the Transition Theorem, for any such Q,

| ~ =~ >~ = TN P s et e e ot B NSO

Fo(Te:B,,8y) < Fo(T,8,,B,)

for T not identically equai to T,

Thus we are led to consider the problem (3.3) with the body
isothermal at temperature T,. in this case (3.2) takes the form

F(TO,B,,B2) = lei(To) + [f(To) . (3.4)

B, 1 '
]

We still have the problem of nonexistent integrals, but this can be

circumvented provided we limit our discussfon to situations in which

one or the phase regions is bounaded,

and this we shall do. Then, by subtracting the same constant K from both
bulk free-energies we can give the problem (3.3) meaning; indeed, if we
take K to be the bulk free-energy of the unbounded phase at T, and

normalize the free energies in this manner, we are led to consider, in
place of (3.4), the functiona)

F(D) = F¥(Tovol(D) + f(T,)area(aD),

where D is the bounded phase region, while F¥(T;) s the bulk

free-energy of the bounded phase minus the bulk free-energy of the
unbounded phase, both evaluated at To- In view of the discussion above,
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3

;‘.;E we define as stable those bounded phase regions D that

» minimize  F(D). (3.5)

.

3 Problem (3.5) is trivial when F*(T,) 2 0: the solutionis D=8. Thus
v assume: -

o' - -

'E' FY(Tg) <0

-

" Let b> O be defined by

s b = - [(T/F(Ty), (3.6)

i

i: so that (3.5) has the form

! minimize  -vol(D) + b area(aD): (3.7)

; By considering a sequence of balls with radii tending to infinity, it is
I Clear that the infimum of the functional in (3.7) is -eo, and there are no
; stable phase regions. However, even though (3.7) has no solution, we can
X study the types of instabilities compatible with our model by studying
‘;’ minimizing sequences; that is, sequences (D} on which the functional
in (3.7) tends to -oo. Let

;g v, = voltd;)"  a, = area(2D,).

:3 Then (D,} ‘is a minimizing sequence if and only if (D} is consistent with
e the area-volume lmit:

4

B V, -ba veo 35 Nes,

; |

Since b> 0, an immediate consequence of this condition is

: V, ¥ as N-voo,

i

3

~|
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Remark. By (2.11), the modulus b has the following approximate form
e for uy =T, - T, small:

)
"“& b= T, f(T,)/Llu,l (3.8)
,‘gé = Tl ¥/ Ll '
S Mullins and Sekerka [1963] estimate that f(T,)/L has 107 cm. as
3 .ia; order-of-magnitude. Taking this as an estimate of (T,)/L, and using the
2 value 1072 given by Delves ([1974], p. 80) as a “small value” of lugl/ Ty,
) we are led to the estimate of 107 cm. as a reasonable “large value” of b.
i:': (Of course, b can be as large as we wish; we simply take T, sufficiently
10 close to T,,.)
K
e N .
- The area-volume limit restricts the growth-rate of interfacial area,
.-» but even so it is possible to construct minimizing sequences in which the
o interface exhibits interesting behavior. We now give some examples (cf.
8 Figure 4).
120

° .
1. Dendrite spike.
,3 Let D, bearight circular cylinder of radius r and height n, with
b0 r independent of n and r> 2b (cf. the Remark). Then
O v, -ba, = 0(n) (3.9)
22
\-' and the area-volume limit is satisfied. Thus (D ) is a minimizing
, sequence. We couldlet r=r dependon n, aslongas infr_ > 2b.
I
iy 2. Praarite star.
A o Let D, be the union of N(n) spikes, all of height n and radius r> 2b,
"- where N(n) is finite, but arbitrary. Then (3.9) remains validand (D) isa
}-f minimizing sequence.

‘::.'[)

3 3. Simple dendrite tree.
? 5 Let D, consist of N(n) spikes, each of radius r, but with varying
T heights which total 1(n), where 1(n)+eco as n—>eo. Then, for large n,
by
s v, = Tr2i(n) + OC1), 2, = 2mri(n) + O(1),
140k
t.:s and the area-volume limit is again satisfied.
e
3 -1s-
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simple dendrite tree

prickly ball

N(n) spikes of
total length 1(n);
n) > e

o(n?) spikes of length n
covering a sphere of
radius n

Figure 4. Some examples of minimizing sequences for (3.5) when the
unbounded phase is superthermal.
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4. Dendrite tree with branches of varying radii.
Let D, consist of a stalk, a dendrite spike of radius r, and height n,

$ and, growing from it, np spikes arranged as follows: for each m,
X m=1,2,.,n, there are

i{ p spikes of radius r /m and height n/m.

B Then

0 v =1 2np(pt + 23+ 334+ ) + 0(1),

D) a =2mrnp(p™' + 272+ 32+ _+n?) + O(1).

) For k=23,

)

A RS-

A Ag=pi+ 2m

] m=2

3 is well defined. Let r-»r, with r finite or +e. Then, if

’f

¥ rAs/A, > 2b,

» the area-volume limit is satisfied.

0

. S. Prickly ball.

f" Here D, consists of a sphere of radius n covered with o(n?) spikes of
P length n and radius r. Then,

v, = (4/3)1n3 + o(n®), a, = o(n®)

b

» and the area-voiume limit is satisfied.

~ The sequences described above furnish simple exampies of minimizing
& sequences and display the richness of the underlying theory; less trivial
. examples which more closely resemble dendritic behavior are easily

9 constructed.

i To state the results of this section succintly, recall that, in the

3 terminology of Section 2,

[] F*(To) <0 if and only if the unbounded phase is superthermal;

6 F*(T,)> O {f and only if the bounded phase is superthermal.
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Theorem. Assume that the body is isothermal at temperature 1.

(1) Consiger (3.5) with the unbounded phase superthermal. Then (3.9) has
no solution! A sequence (D) 7s @ minimizing sequence if and only It it

obeys the area-volume limit and theréefore has corresponaing volumes
tending to infinity. These conditions allow for interracial instabilities
Such as those exhibited by the sequences aescrived above.

(1) Consider (3.5) with Ty =Ty, or with the bounded phase superthermal

Then the only solution is D = @

Remarks. _
(1) It would be interesting if one could, in some sense, geometrically
classify the sequences consistent with the area-volume limit.

(i1) By definition, a phase is superthermal if it has higher free-energy at
the underlying temperature. In this sense the superthermal phase is
unstable, and, as the theorem shows; the other phase uitimately occupies
the entire body.

(ii1) Mullins and Sekerka [ 1963], working within the gymamical theory
discussed in Section 11, have established the instability of the interface
for (infinitesimal perturbations) of a sphere solidifying in a supercooled
melt. Assertion (i) of the theorem, with (D] the prickly ball, gives an

analog of the Mullins-Sekerka instability within the framework of the
equilibrium theory.

(iv) The Transition Theorem and the theorem above show exactly what is
needed for the interface to be unstable, namely:

(2) an infinite region, for otherwise the boundary captures the instability;
(b) the unbounded region in a superthermal state, so that it is enveloped by
the more-stable bounded region.

'Actually. in this case the empty set is 8 /oca/ minimum of (3.5), since (3.5) is positive for all D of
sufficiently small volume.
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3.3. Isolated body.

As a consequence of the transition theorem, stable states are
necessarily single phase when the boundary is held at constant
temperature. We now show that coexistent phases are possible when,
instead, the body is isolated. For convenience, we return to our original
assumption that B be bounded '

For an isolated body the total energy is fixed. Writing E, for the

value of this energy, the corresponding stable states are, by definition,
those that

maximize S$(T,B,B,) subjectto E(T,B,B,)=E, . (3.10)

To solve the problem (3.10) we assume that the bulk and interfacial
specific heats are strictly positive, and that

E(0+) isfinfte, E(eo) = +eo;  S,(0%) = ~oo. (3.11)

Also, to insure that the constraint equation in (3.10) has a solution, we
assume that

Ey> E(0+)V for at least one value of i. (3.12)

Our next result shows that (3.10) has a solution; in the statement and
proof of this theorem we use terminoiogy introduced in the Appendix.
Also, for convenience, we write

o= €TV, ET V). (3.13)

Theorem. Consider an isolated body. Then there exist stable states
corresponding to any t, consistent with (3.12). HMoreover:

(1) £ach stable state has constant temperature.
(11) £ach two-phase stable state has minimal interrace, hence the
interrace is a surrace of constant mean curvature which meets oB
orthogonally.
(11) For 1(T) sufficiently smali there Is a nonempty interval

Je}y such that for Ey€) all stable States are two phase

Proof. Our proof will proceed in three steps.

Step /- Proof of (1). Fix B,, B, (and hence 1), let

v, = vol(Bi), a = area(l),




%

S RS

.,'E';.

and consider (3.10) as a problem for T. Let us agree to call a temperature
field T. admissible if T is consistent with the energy constraint in
(3.10); phasewise constant \f T is constant on B,, constant on B,, and

constant on I. Further, for each temperature field T define numbers
T,>0 and T,>0 by

E(Tv, = [E(T), e(Tpa=fe(T).
B, I
(Because of the strict monotonicity of E(T) and e(T), this definition is

valid.) Then, in view of (2.20),

JISET) = 5T = [(S(T) - S(T) - T HE(T) - E(T) < 0
B, B,
if T isnot identically equal to T, on B; a simlar argument applies to

s(T) on L. Assufne that T is admissible, but not phasewise constant.
Then, by the above inequalities, the phasewise-constant field with values
T, on B, and T, on I is admissible and has total entropy strictly larger

than that for T. Thus

the set of stable states is contained in the set of
states with phasewise-constant temperature fields. (3.14)

Continue to hold B,, B2 (and hence I) fixed. Consider the problem,
motivated by (3.14), of finding numbers T,>0 and T,> 0 that

maximize ST, v, + SZ(TI,)V2 +s(T))a
(3.15)
subject to  E(T WV, + Ex(T, v, + e(T))a=E,

In view of (3.11) and the continuity of the functions appearing in (3.15),

this problem has a solution and, using a Lagrange-multiplier, it is a simple
matter to verify that solutions have T,=T, = T;. Thus

the set of stable states is contained in the set
of states with constant temperature fields, (3.16)

which establishes assertion (i) of the theorem.

Step 2- Existence of stable states and proof of (i1). Consider the problem
of finding numbers




TY oA
oo ]
tl

T>0, 0gvgy, 222 (V) (3.17)

e

that solve the problem

o M e iy g
SRARLLEA.

minimize  W(@V,T;Tg) = W (T,T)lv + Wy(T,T)(1-v) + w(T, T )a

-,

X , (3.18)

) subject to  E (Tl + EX(TX1-v) + &(T)a = E,,

,:,.. where 2 . (v) is the minimal-area function defined ir{ the Appendix, W,

] and w are the Gibbs functions (2.17),and T, >0 is arbitrary, but fixed.

:: ‘ Because of (2.17) and (3.16), every stable state (T,8,,B,) yields a solution
Y

> (a,v,T) of (3.18) with

()

\‘, v=vol(B,), a=areall); (3.19)

A%

B

‘ conversely, every solution (a,v,T) of (3.18) generates - in the obvious

T3 sense - a stable state provided we can find a partition of B consistent
\F with (3.19). But by Theorem 1 of the Appendfx, such a partition can always

e be found if

Y

N a=a_ (V) (3.20)
2

4% Thus to complete Step 2, it suffices to show that (3.18) has a solution, and

that every solution obeys (3.20).

D Because of (2.17) and (3.11), w(T,T,) is bounded below, while

ﬁ"<
ol ol b
k Sap S

W0 Tg) = +e0,  Wi(+oo,To) = +oo;

-

L7

_ thus (3.18) has a solution. Let (a,v,T) be such a solution. Then {a,v,T) is

noy a solution for any T, > 0. Choose T, >T. Assume that a>a_, (v). Then,

i because of the strict monotonicity of the internal energies, we can find

\’% numbers a* and T* suchthat T <T*<T, and a,, (v) <a* ¢a; and such

that (a*v,T*) satisfies the constraint equation in (3.18). Further,

ﬁ \ because of (ii) of the theorem containing (2.19),

BUC

1 '{-\

f W(a*,v,T%T)) < W(a,y,T;T,),

1%

®

i which contradicts our assumption that (a,v,T) solve (3.18). Thus (a, v.D)

e obeys (3.20).
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Step T Proof of (iii). Let

Wy = W (T Ty) = Wl T T), 2, = Sup (3, (V): OsveV),

min
and let T,=T,(E,) be the unique solution of
E(TV =E,

Then, as is clear from Figure 5 and the properties of the Gibbs functions,
there is a nonempty interval Jc},, such that for E €},

w,(T (EO)T ) > Wy + f(Ty)a,,, @ W@, V,TT,). (3.21)

The left side of this inequality is the total Gibbs-energy (3.18), (with T, =
Ty) for the two admissible single-phase states. On the other hand for

0 <v ¢V the right side is the total Gibbs-energy for a (not necessarily
admissible) two-phase state at temperature T = Tn- Thus, if we can find

a ve(0,V) that satisfies the energy constraint (3.18), with T=T,, we

will have exhibited an admissible two-phase state with lower total
Gibbs-energy than.the two admissible single-phase states, so that the
solution of (3.18) is necessarily two phase. Thus to complete the proof we
have only to find a ve(0,V) such that

E,(TyV + Ex(T,)(1-v) + e(Ta_ (V) = E, (3.22)

But since £,€)y, and since the left side of (3.22) varies continuously
from Ex(T,)V at v=0 to E(T,)V at v=V, wemay use(3.13) to
conclude that sucha v exists. O
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Figure 5. Internal energles E,(T) and Gibbs functions W(T,T,) as
functions of temperature T.
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PART I1. GENERAL THEORY.

4. Preliminaries.
We now allow the interface 1(t) and (hence also) the phase regions
B/(t) to depend on the time t. We use the following notation (Figure 2):

n(x) is the outward unit norma!l to 28; m(x,t) is the outward unit normal
to B,(t) on I(t); v(x,t) is the normal velocity of the interface in the

direction m(x,t); R(x,t) is the sum of principal curvatures of I(t)
with k> 0 when the center of curvature lles toward B,; cot(m,n) is the

cotangent of the angle between m and n:

cot(m,n) = p/(1-p?)'2, p=m-n. (41)

For any field g(x,t), let %) denote the limit of g as the interface is
approached from points of B,, and let

[9) = 95 ~ 91y (42)

denote the jump in g across 1. We then have the standard identity

(Jg )y = J?' + eI,g. - {[g]v. (43)

A less trivial result holds for integrals over the interface. Let g(x,t)
be defined for each x in I(t) and all t. Choose a time B and a point y
in I(B), and let x(t) denote the curve that passes through y at time 8
and has

x*(t) = v(x(t),thm(x(t),t)

for all t. Then

g2(y,B) = (d/dt)gix(t),t)| g (4.4)

represents the time-derivative of g following I

-27-
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Transport Theorem.'

({g > = {gov + {g‘, - aIlgvcot(m-n). (45)

The first term on the right side of (4.5) represents a change in the
integral of g due to the curvature of the interface, the second term gives
the change due to changes in g, the third term represents a flux of g

across the boundary of B. :
An immediate consequence of (4.5) is the transport theorem for area:

area(l)y = llw - lecot(nrn). (46)
d
Remark. By (4.1), cot(m-n) =c when m = #n. Thus for (4.5) and (4.6) to
be valid it is necessary that
on 3l: v=0 when m =:$n, (4.7)

and that this Jimiting value of v be approached sufficiently rapidly from
the interior of 1. This condition will be a tacit asumption in what
follows.

Let S denote an arbitrary subsurface of 2B, let r> 0, and let

D, =[x x=y-Bnly), yes, 0<B«r},
S. ={x x=y-rnly), yes).

Then D, and S, respectively, are the region and surface obtained by
r-transporting S along the normal. Here we will always write n_
for the outward unit normal to D, on S, (Figure 6).

williams [1985). In this conneclion see also Scriven [1960), Moeckel [1975).
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5. First two laws. Additional constitutive assumptions.

To discuss the thermodynamics of B we allow the functions E(x,t),
S(x,t), T(x,1), e(x,t), and s(x,t) to depend on the time t, and we introduce a
new field: q(x,t), the heat flux per unit area.

Let D be an arbitrary fixed subregion of B, and let

I, =1nD; ¢ = 3l,\oB, (5.1)

so0 that aID is the closed curve which marks the intersection of 1 with
oD, while ¢, is the portion of this curve which lies in the interior of B.
The internal energy of D is given by

£+ Je,

D I
Also, because of the (possible) motion of the interface relative to D,
there is a flux of interfacial energy across the boundary of D (and out of
D) of amount

[evcot(m-n),

‘D
where n is the outward unit normal to aD, while cot(m'n) is defined in
(4.1) (cf. Figure 7). We integrate over c,, rather than 3l,, since there is

no loss of interfacial energy across the boundary of B. Finally, there is a
flux of heat into D of amount

- Jarn.
aD
In view of the above discussion, the first law for D takes the form:

(fE + fe) + fevcot(mn) = - [gn. (5.2)'2
D lD CD oD

Similarly, D has internal entropy and there is a flux of interfacial
entropy across the boundary of D. Also, the flow of heat is accompanied
by a flux of entropy of amount

. ‘Fernandez-Diaz and Williams [ 1979). An esrlier version is contained in the work of and Moeckel
- {1975], but Moecke! introduces a somewhat artificial material description of the interface. Other

- discussions of the first law are given by Fisher and Leitman [1968), Murdoch [1976], Wollkind [1979],
{3 and Rogers [ 1983).

) 2gyrface tension, in our theory equal Lo the interfacial free-energy, does not enter the first law;

ey indeed, since our model is rigid, bulk and interface forces do no work.
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Figure 7. Behavior of the interface I(t) near aD; vcot@ is the rate at
which interfacial area leaves D, per unit length of I,
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r - [Tqn.
KA )]
.'3 We therefore write the second law for D as
e
([s + [sr + fsveottmn) » - [T"lqn. (5.3)

' ¢ aD
,14 D D
:3 The term
)
3
L: P(D) = ( t[)S + ']s » + [svcot(mn) + ]T' qn (5.4)
':|§0 0 ©
5-‘,' represents the entropy production in D, and the second law (5.3) is
" simply the requirement that P(D) 2 0.
4 In addition to the constitutive assumptions introduced in Section 2.1,
) we assume that the heat flux q s governed by the constitutive equation !l
@ q = -k(T)gradT (5.5)
o <
o in each phase region B;, with %
b (A7) conductivities k(T)> 0. '
.

w Concerning the interface I, we assume that ‘
5{‘ (A8) T is continuous across the interface, (5.6)
)
4
e so that the interfacial temperature is defined unambiguously. In addition,

o’ we assume that the interface produce no entropy:
;Esi (A9) .if the volume of D tends to zero, then P(D) tends to zero. (5.7)
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6. Partial-differential equations. Jump conditions.
In this section we derive consequences of the requirement that the

iji:;; first two laws (5.2) and (5.3) be satisfied in every subregion D of 8
1:35:: We assume that the fields E, S, and T are smooth away from the
:}:.3 interface 1. Then (5.2) applied to an arbitrary region D lyingin B, in
k ,.c.
el conjunction with the constitutive equations (2.1) and (5.5), lead to the
o classical partial-differential equations
1hy
e
»}: E(T)* = -divq, q = -k,(T)gradT, (6.1)
:3' or equivalently, by (2.3),
s
:}22 C,(T) T* = div(k (T)gradT) (6.2)
W in B, forall time.
o Our next step is to derive appropriate jump conditions across the
;: interface. Although the temperature is continuous, the fields E, S, and q
‘ hy will generally suffer jump discontinuities across the interface. We also
1 -allow q(x,t) tobecome infinite as x approaches 2I(t); in fact, we
assume the existence of a scalar function Q(x,t) on dI(t) such that:
, i given any sub.urface S of 9B, iIf S is obtained from S by
\E." r-transporting S along the normal, then
y jan, = fan + [Q, [Tqn > [T7'gn ¢+ [TQ (6.3)
i s, s snal S, s snal
! as r->0.
. ! The next result is central to our investigation.
J
e Interface Theorem. 7% interfacial balance laws
Iy . \
}g, -v[E] + vke + e = -[q}'m, (6.4)!
',
e -v[S) + vks + % = -T")[q}'m (6.5)
v
%":E holdon 1 forall time. The contact condition
il
]
: . vm-n = 0. (6.6)
:} holds on a1 for ail time
i 'if',.:'
o Proof. Note first that, by (6.1) and the identity E(T)*= TS(T)",
ol
ik
o 1cf. Moeckel [1975), Fernandez-Disz and Williems [1979).
'. -33-
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ST’ =-divT'@)+r, r=-T?ggradT (6.7)
in B, forall time.

Next, the laws (5.2) and (5.4), for an arbitrary subregion D of B,
have the form

([6 + [g) + [gvcot(m'n) = -[pn + R(D), (6.8)
0 ip ¢ )

with R=0 for (5.2) and R=P for (5.4), so that in either case R is
consistent with (5.7). By (4.3) and (4.5), the left side of (6.8) is equal to

gG’ + J6* + [(gRv +g®-I[Glv} - [gvcot(m-n), (6.9)
1 D2 Ip )
where D, is the portionof D in B, while

8y = aIDn oB

is the portion of aID in contact with 2B.

Assume first that aD does not touch 3B. Then we may use (6.1), (6.7),
and the divergence theorem to conclude that

j6* = -fp'n + Z(D), (6.10)
O 0,

where Z(Di) tends to zero with the volume of D, Further,

flplm=(] - { - | Xp'n), (6.11)
I a Dy D,

and, since s, is empty, if we combine (6.7)-(6.11) we find that

[{grv + g* - [Glv « [plm} = R(D) - Z(D,) - Z(D,). (6.12)

I

0
By (5.7), if we shrink D to the interface, the right side of (6.12) tends to
zero; since Iy is essentially arbitrary, this yields (6.4) and (6.5).

Now choose a.subsurface S of 2B, apply (6.8) and (6.9) to the region
D, obtained from S by r-transporting S along the normal, and let r

approach zero; by (5.7), (6.3), and the fact that S is arbitrary, the resuit
is
evcot(mn)=Q,  svcot(m-n) =T7'Q, (6.13)

so that, by (2.13),

f(T)vcot(mn) = 0,

ey iy T N T
0 f‘\ LA R Sl T '\l_‘.."- P e W W N
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e which yields (6.6), since f>0. D

*{ Remarks. |

Y (i) 1t is clear from (6.6) and (6.13) that Q = 0, so that (apart from a
- possible jump discontinuity) the Aeat 7/ux is nonsingu/ar along al.

(i1) We could also allow for surface energies e, and surface entropies s

( between the phases and 2B. Were we to do this, then, assuming e, and s,
é i are constant, (6.6) would be replaced by the more general condition
25 VIt(M - 1M - marM} =0,  f(M=¢-Ts,
)(.
* on dl. Moreover, in this case the feat flux is generally singular on 2l
’ with
. Q=-vle, - e, - (mne(Mi{1- (mn)?)/2
0 17 %2
el .
E} As an immediate corollary of (6.4) and (6.5) we have, for v = 0,
;':‘:'l
® Balance of free energy. On 1, forall time,
R
i [F] =Rt, (6.14)
:!
FUAD
e or equivalently
2‘%’ | T = (IE] - Re)/([S] - ks). (6.15)
H5%
% . Proof. By (2.13) and (4.4), e® = Ts8; thus if we eliminate the heat flux

e from (6.4) and (6.5), we arrive at (6.14), and solving this for T yields
2 (6.15). O

r.,.&
5 Remarks.
Y (i) If e=s=0, which is the assumption underlying the classical theory of
15 melting, or if k=0, then, as a direct consequence of (6.15),
e |
-2 T = [EVIS) (6.16)
. and
T, [F)= 0. (6.17)
o
L] Thus, granted the assumption that the free energies F,(T) coincide at
A i’j exactly one temperature, -we find, as a consequence of the laws of

thermodynamics, that in the absence of interfacial structure the

‘ "] ‘\ " " "
f
v i J W) foo™ plA
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free-boundary condition (6.15) must necessarily reduce to the classical
condition

T=T, on L

(it) Even though the notion of force does not enter our theory, we can
define pressure by noting that, since F,(T) is the free-energy per unit

volume, VF(T) is the free-energy a region of volume V would have if

occupied solely by phase i; differentiating this expression with respect to
volume yields the negative of the pressure:

p, = -F(T.

A similar argument identifies f(T) with sw/ace tension 0. With these
definitions (6.14) is the Gibbs-Thompson relation'

Py - P, =RO.

It must be emphasized that our derivation of (6.14) makes no use
whatsoever of the notion of equilibrium.
(iii) It is not difficult to show that

P(B) = Ik [T 2igradTi?,
8
so that, as would be expected, the entire production of entropy is due to
heat conduction.

We close this section by listing what might be considered a complete
system of field equations and free-boundary conditions for the general
nonlinear theory: namely, (6.2), (6.4), (6.6), and (6.15). We do not need
(6.5), since, granted (6.4), the conditions (6.15) and (6.5) are equivalent.
The system is, then,

C(T) T* = -divq, q = -k,(T)gradT in B, (6.18)

T = ([} -ke)/([S]-ks), [qFm = V[E] - vke - €4 on I, (6.19)

vmn=0 on 2I, (6.20)

withE, S, e, and s given by the constitutive equations (2.1), (2.2}, 12.12),
and (2.13).

16ibbs [1878), Eq. (500).
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7. Boundary conditions. A bound on interfacial area.
Throughout this paper we will be concerned with the following
boundary conditions:'

(i) isolated boundary:
qan=0 on 25; (7.1)
(i1) isothermal boundary:

T=T, on 28 (T, constanﬁ). | (7.2)

These boundary conditions, when combined with (5.2), (5.4), and (6.6),
yield the

Global growth conditions. /7 the boundary is isolateq,

(LE + {e)'-- 0,

: (7.3)
(LS + Js)‘ = P(B) 2 0.
/1 the boundary is isothermal or isolated,
(JE-TS) « f(e-Tys) ¥ < -T,P(B) < O, (7.9
B I

with the constant 1,20 arbitrary when 3B Is isolated

Remark. Note that the variational characterizations (3.3) and (3.10) can
be deduced from the above theorem under the assumption that each process
consistent with boundary conditions (7.1) or (7.2) approach a stable
equilibrium as t<-ee,

If we integrate (7.4) from the initial time t=0 to an arbitrary time,
we conclude, with the aid of (2.19), that

F (Tvol(B,) + F(TovolI(B,) + 1(T)area(l(t)) < F0),

F(0) = the initial-value of [(E-T;S) + [(e-T,s).
B |

'We do not mean to imply that these are the only boundary conditions of interest. In fact, here and In
subsequent sections, sil resulls for sn isothermal boundary are valid without change for the boundary
condition: T=To on Ay, q'n=0 on Ag, with A; complementary (nontrivial) subsets of 2B.
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Thus, letting

T
Wy v
R FrinTo) = MIN(F (T ,(To), V= vol(B),
) q
& we are led to the following
.; v'
? Bound on interfacial area. Assume that me bounadary Is Isolated or
i.‘ 2 Isothermal. Then for all time t,
Ot
}g% area(l(t)) < f(Ty)~HFO) - VF_ (To), (75)
At
g :
3% with Ty arbltrary when 8B s [solated
Hey Note that, in addition to (8.5), we have the estimate
e
e VFin(To) < I(E T,3) < FO0).
:"!h
,, Intuitively, one type of dendrite might be a "set” with vanishingly smail
33: A volume, but nonzero surface area. The following definition' makes this
;;E idea precise.
2‘.: We say that phase i approaches a dendrite with null volume if:
A lim vol(B,(t)) = 0, 1im inf area(1(t)) > 0. (7.6)
k: t> e t> oo
RS Remark. The inequality (7.5) asserts that area(I(t)) is bounded
s uniformly in t by a constant which depends only on: (i) the bulk and
2!‘::;: interfacial free-energies at To; (ii) the initial data. At first glance it
OOK)
::l';‘.:: might seem that this bound on interfacial area precludes the formation of
g an interface which is too wild. But this is not so. indeed, dendrites with
Way null volume are completely consistent with (7.5). Moreover, as we shall
vi : see, the theory discussed here will predict such instabilities, but only on
: }: - a very small length scale.
ang
o
7
‘,‘.>.
-

-

1A more general definition would use the limit L-+t% with t* /e or infinite.
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3 8. Quasi-static theory.

a 8.1. Basic equations. Growth conditions.
:‘ in this section we attempt to model situations in which the interface
:Q moves slowly compared with the time scale for heat conduction.! The
i ' constitutive hypothesis underlying our model is that - in each of the

i _ phases - both the bulk energy and the bulk entropy are constant. Since the
2 two phases coexist at the interface, the constant values of energy and
o entropy should be the values in the real material at the transition
D temperature. Thus, by (2.5) and (2.8), and since there is no loss of
oy generality in allowing the energy and entropy to vanish in phase 1, we
Q base our model on the constitutive assumptions:
‘SN
'13 E, =0, E, =L,
'y (8.1)

S,=0, S,=L/T,,

o with L> 0 the latent heat (2.5). In addition to (8.1), we suppose that?

e, s, and k; are strictly-positive constants; f(T,)> 0. (8.2)

Remark. By (8.1), the bulk and interfacial specific-heats are identically
zero. Note also that, because of (8.2), the resulting interfacial
free-energy has the form f(T) =e - Ts and is negative for large values of
T. It is therefore tacit that - for this model - we are dropping
assumptions (A3) and (A6).

For convenience, we shall generally refer to
u=T-T, (8.3)

as the femperature This definition and (8.1) allow us to write the
interface condition (6.19), in the form:

u=-hk/(1-ak), (8.9)

where h and a are captllarity lengths defined by

o .

i h=Tyl(T /L, a=Tys/L. (85)
VThis assumption is discussed by Mullins and Sekerka { 1963 ).

1 - Although we make these assumplions for convenience only, we may infer from remarks of Adam

} o (1930), p. 20 that for many liquids the sssumptions concerning e and s sre reasonsble over s wide
v range of Lemperstiures.
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Thus, by (6.18)-(6.20), we base our model on the equations:

::él:q
ey Au=0, q = -k,gradu in B, (8.6)
B
'~. u=-he/(1-2), [ql'm=(L - kel on I, (8.7)

8

y.
,- " vmn=0 on ol (8.8)

A

i

oy Remarks.
5& (1) By (8.2), (8.3) and (8.5), T computed using (8.7), has the unfortunate
;;:' 2 property:

e
2 T<0 for L/eshsL/(Tys);
;:;:o"
1;5:':;! hence 2A/s range of curvatures lies outsiae the range of validity of our
ey model. Mullins and Sekerka [1963) estimate that f(T.)/L has 107cm. as
"-' order-of-magnitude. If we take this value as an estimate for e/L, we see
T that this range of curvatures corresponds to radii of curvature < 10-7cm.
-& g
1'3 (i1) It is not difficult to verify (by simply reversing the steps of the
;‘:ﬁ arguments given in Section S5) that solutions of the system (8.6)-(8.8) are
b consistent with the first two laws as presented in Section 5.

;;as':}" In view of the preceeding remark, under appropriate boundary
'::'«'.5 conditions solutions of (8.6)-(8.8) satisfy the growth relations (7.3) and
e

b (7.4) as well as the area estimate (7.5). We can, however, deduce more
Wk
S interesting estimates. We begin by writing the /sothermal

T, boundary-condition (7.2) in the form

q" ;

e
Zg o U=us on 3B  (uy =T, - Ty,). (8.9)
i

e Next,

ot vol(B,)* = -vol(B,), (8.10)
;.;:. and, by (8.1) and (8.3), for g=eors,
K)o

]
3:3::3; (JE) = LvolB,* = T,(fS),  (fg) = garea(l)
fand 8 8 !

..; Therefore, if we write

%‘ H=Tuf(T)L, B=e/l

A' \‘
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;-‘;iia (so that 3> 0), and assume that u > 0 in the case of an isothermal

Q.' boundary, then (7.3) and (7.4), with T, =T, in the case of an isolated
3"?:: boundary, yield the following
\‘.’l
e Growth conditions.
b (1) For an isolated boundary,
Y
::I oo
%" y vol(B,) + Barea(l»=0, area(l)’<O. 8.11)
¢ ) . ,
'3: (11) For an isothermal boundary,
e
i ;
:I': Uovol(B, ) + pared(I)® <O. (8.12)
N
;':;3‘ Appropriate initial conditions for the system (8.6)- (8.8) are:
e : .
R0 B{(0) = By, (8.13)
| J
E with (B,,,B,,) the initial distribution of phases. We shall designate by
* Problem QS the initial-value problem defined by (8.6)-(8.8), (7.1) or
o (8.9), and (8.13).
» Yol
;s;;‘:? Questions.
;::;c's 1. What is an appropriate weak formulation of Problem QS?
o) 2. 1s Problem QS well posed?
o)
':' N The growth conditions for QS yield a uniform bound on interfacial area,
':;'.:.o and hence imply that the interface cannot become too wild. However, as
}:{g:'. we have remarked in Section 5, estimates of this nature do not, a-priori,
alnd rule out dendrites with nuil volume. To discuss this possibility, let
™
(3 Eo = v0I(B,(0)) + Barea(1(0)), (8.14)
AR | -
poss so that E, is essentially the initial energy. Then we have the following
,' mathematically trivial, but physically interesting, consequence of the
! i growth conditions.
o
*v
‘«'}: Corollary. Foran isolated boundary, If the initial energy is small enough
o0 ry a4 ovg
@ (Ey < V), then dendrites with null volume cannot form
;c‘
)
208
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Proof. Inview of (8.10) and (8.11),

voI(Bz)‘ 20,

so that for a dendrite with null volume to form, vol(B,)-»V. But by (8.11)
and (8.14),

vol(B,(t)) < E,, (8.15)
and the desired conclusion follows. O
Remark. By (8.14), for B,(0) asphere of radius r, the condition Eg> V
is equivalent to r < 3B. Using the Mullins and Sekerka [1963] estimate of

1077cm. as an order-of-magnitude for B =e/L, we see that for the
formation of dendrites as discussed above we must have r < 10~7cm.
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8.2. Equilibrium in the quasi-static theory.

We now turn to a discussion, mostly formal, of the equilibrium behavior

of solutions to Problem QS. Consider, then, a solution of Problem QS and
suppose that

as t» oo, anequilibrium state (u,, B,,,B,,) exists. (8.15)

Let I_ denote the interface corresponding to (B, ,B,.). For convenience,
we consider separately the two types of boundary conditions.

A. Isolated boundary.

Let Ey 20 be the initial energy (8.14). Then by (8.10) and (8.11) it
seems reasonable to expect that (B, ,B,,) isa solutfon, or at least a
local minimizer, of the variational problem: minimize

area(l_)

subject to the constraint

vol(B,,, ) + Bareall,,) = E,

The solution of this variational problem, ¥ say, is given in Theorem 2 of
the Appendix; the results are:

() If Ey<V, then W has asolution. Moreover, every solution will have

minimal interface, and hence will have an interface of constant mean
curvature which meets aB orthogonally.

(1) 11 Ey> V, then 10 has no solution in the standard sense. Minimizing
sequences (ByqBop1,) Will have

vol(B,) > 0,  area(l) =>(E,- V)/B> 0. (8.17)

Remark. By our convention (Section 2), phase 1 is the solid phase. Thus
if the initial "energy” is 1arge enough, then, for each minimizing sequence,
the region occupied by the solid phase approaches a “set” which has zero
volume, but non-zero boundary-area, a result which, by (7.6), seems
indicative of the formation of dendrites. Note that this phenomenon does
not arise in the general theory (cf. the theorem of Section 3.3). In the
quasi-static theory the bulk energies are constant, and thus sufficiently
large energies can be attained only with the formation of a large
interface; this is the reason for the behavior specified in (ii) above.

_________________
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On the other hand, in the generai theory the bulk energies increase to
infinity with temperature, and thus large energies are attainable without
creating a large interface.

o B. Isothermal boundary.

f}g By (8.12) the equilibrium configuration should

;}';: minimize  u,vol(B, ) + parea(l,,).

o

f:: This variational problem has an obvious solution. For Uy= 0, B,. Is

either B or @. Further, since

» vol(B,..) + vol(B,) = V,

o

' for u,=0, B, fseither B or @ according u, <0 or u,>0. Thus,

e granted the validity of this variational problem, B is ultimately single
é-: phase, the solid phase prevailing if u, <O, the liquid phase if u,> 0. As
':,. would be expected, these results are consistent with the Transition

" Theorem (Section 3.1).
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:§ 8.3. Quasi-static theory with B unbounded.
i We now allow B to be all of space, but assume that

RS one of the regions B,(t) is bounded for all t (8.18)!
N

[\ '

B ‘ (cf. Section 3.2). Then for B, bounded the constitutive equations (8.1)
,;:;‘,' lead to finite values for total energy and entropy. This will be true also
: % for B, bounded provided we stipulate that for this case (8.1) be replaced
i by

$3' ‘

o £, =-L E,=0,

SN -

;E s‘ - -L/T", 52 - O-

e

wh In addition, we write r=Ix|I and replace the boundary conditions by
i;:g either of the following conditions:

LA

1?|:|

o (1) body isolated at infinity:

D

B3 q(x,t)>+0 as r-eo,

K22

L (11) body isothermal at infinity:

i u(x,t)->u, as r- oo

=R}

]

o] Then, since u is harmonic in a neighborhood of infinity, we have the
following estimates as r— co:

i

_{;1 u(x,t) = g(t) + O(r™"),  qx,t) =0(r"2) if isolated at infinity,

Wy

- ux,t) =uy + O(r"),  q(x,t)=0(rF2) if isothermal at infinity.

®
R

:?é" These estimates allow us to establish (7.3) and (7.4) under the present
!;3: hypotheses: we simply replace D in(5.2) and (5.3) by a large ball whose
:;u: radius is ultimately allowed to tend to infinity. Using the extended

o ~versions of (7.3) and (7.4), it is a simple matter to verify the following:
il

::E::'

g
o
ot TThen the snalysis of Sections S and 6 extend; we need only require that the first two laws hold in
) 133 every bounded subregion of B. Note thal the contact condition (6.6 is here vacuous.

4 ¢~
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i Growth conditions for an unbounded body. Zet B, be the bounded
phase region.
. (1) /1 the boay Is isolated at infinity, then

" (-1)'vol(B,) + Barea(l)* = 0,  area(l)< 0. (8.19)

- (i1) /7 the boay Is Isothermal at infinity, then

(-1)*Tugvol(B,)* + parea(l)* < 0. (8.20)

4.0 “u ™ 1\: v, LA ,,- ‘Y\' " \‘ o™ - - ..’,.._' B .", ""-".'-“---'X" -4_‘\_ PR '.,“'-.-’.._'\ ';”‘R N TR . L%, ‘ '~ u
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, 8.4. Equilibrium with B unbounded. '

We assume that (8.16) is satisfied and, for convenience, consider

o

x separately the two conditions at infinity.

s A. Body isolated at infinity.

- For B, the bounded region let

S

i"':}'; . E, = the initial-value of (-I)‘vol(B,) + Barea(aB)), (8.21)

B0

o '

'.:i?.. so that, as before, E, is essentially the initial energy. Here we have used
\

o the fact that

o

:‘:’.‘ I = aB'-

".‘i‘ =

X For convenience, write

;fr'i

"?’? D-B.

°

, for the region occupied by the bounded phase at equilibrium. Then by (8.19)

E% it seems reasonable to expect that D is a solution of the variational

.}. problem:

2 minimize  area(dD)
o (8.22)
Y suvject to  (-1)vol(D) + Barea(aD) = ,,

i Case 1. Liquid phase bounded (i = 2).

’_2: ‘ The solution is a sphere consistent with the constraint.
S

} _-".

heN Case 2. Solid phase bounded (i = 1).

..~, In this case (8.22) has the equivalent formulation

3 minimize  vol(D)
¢ (8.23)
e subject to  -vol(D) + Barea(dD) = E,,

bty

i For E,=0 the solutionis D=@. For E, <O the solution is a sphere

3‘ consistent with the constraint. For E;> 0 (8.23) has no solution; 1
. minimizing sequences (D} have

7

o vol(D )0, area (3D,)+Ey/ 8. |
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:,g Again we have an indication of a dendrite with null volume. |f we consider
an initially-spherical solid of radius r, then, by (8.21), for £,> 0 itis
» necessary that r < 3 (cf. the last remark in Section 8.1).

B. Body isothermal at infinity.
Case 1. Bounded phase superthermal at u,.

In view of the definition of the term “superthermal” (cf. Section 2.1),
¢ for this case either i=1 and yy> 0, or §=2 and u, <O0. For either

(8.20) leads to the conclusion that, at equilibrium, the bounded phase
should

Sk 2w e

- - -

S en e

minimize Iuolvol(D) + parea(aD);

1 hence D = @. Thus a superthermal bounded phase should ultimately

)| disappear.

Case 2. Unbounded phase superthermal at u,.

¢ Here the bounded phase should

,\: minimize  -1u,lvol(D) + parea(aD). (8.24)
This problem is no different than (3.7) (provided we identify' b with

;’ H/y,), and our conclusions may be inferred from (i) of the theorem of

' .

9 Section 3.2. In particular, (8.24) has no solution (other than a local

minimum at D =0); and (D) is a minimizing sequence if and only if it is

consistent with the area-volume 1imit and has corresponding volumes

which tend to infinity. Examples of minimizing sequences exhibiting
A dendritic behavior are given in Section 3.2.

-2
o
'Y
i
i
h.
L
ks
!
PLA
[
s
|
T
:%: Note that, by (3.8), the constant b of Section 3.2 is spproximately u/lugl; in fact, for bulk
free-energies which are linear in T, which is the case here, the relation is exact.
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PART I11. THEORIES BASED ON THE CAPILLARITY RELATION.

il N s
P a':l‘}.;"‘. 3

9. Approximations. The capillarity relation.

Z" : By assumption (Ad), F,(T) = F,(T) when, and only when, T =T,; thus,
) appealing to (6.17) and (2.5): /7 interfacial energy and entropy are
Ly neglecteaq, or if the interface is flat, then

i

wf, [El=L and T=T, on L (9.1)
o

o If interfacial energy and entropy are not negligible, then the interfacial
'\,} temperature T will generally not equal the transition temperature, but
. -. instead will depend - through (6.15) - on the jumps in energy and entropy,
AN as well as the curvature, energy, and entropy of the interface.

"\- We now use (6.14) to derive a simple approximation for the interfacial
' temperature which is valid when the interfacial energies are small. More
--j precisely, we assume that

f;":'. 1Ty =dfy(T), ‘. e(T) =dey(T) (9.2)

j

A with d asmall parameter. By (6.14),

AN

Y - -

?j: F(T) - F(T) = RI(T). (9.3)
R Clearly, (9.3) has the form g(T,d)=0 and for d=0 has the unique solution
4 ':} : T=Ty. Further, the partial derivative of g withrespectto T at (T,,0)
X

bR is 5,(Ty)-S,(Ty), which, by (2.8), is nonzero. Thus, by the implicit
D function theorem, (9.3) has a unique solution T=T(d) near d=0, and

E T=T,+0(d). We therefore write

i M

‘:"0 g _

:3;.; _ u=T-Ty,

)

' ~}- and expand (9.3) about d=0; using (2.7) and the fact that u=0(d), we are
}};5 led to the following estimate, valid to within terms of O(d?):

Y

R

° u®-hk (9.4
sy

X *‘3 with h=0(d) the capiliarity length? (8.5),. We shail refer to (9.4) as the
N capillarity relation; this relation is central to all of what follows.
@ ! Cr. Detves 11974) for a derivation of (9.4) based on equilibrium thermodynamics. In Delves's

2! derivation, as well as in all others of which | am aware, the curvature enters through the classical
oy relstion [p)sh! with [p] the jump in pressure across the interface, a quantity irrelevant to the theory
: ' discussed here.

‘_ tﬁ' 28yt here f is srbitrary, not necessarily of the form assumed in Section 8.
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Our next step is to derive a corresponding approximation to the
interfacial balance-law for energy. Trivially, (2.5) and (9.4) yield, to O(d), )

[El=L, (9.5) ]
and combining (9.5) with (6.4) leads to the following interface condition
for energy:

[q}m = Lv, (9.6)'

again valid to O(d).

The remainder of the paper will be concerned with models based on the
approximate interface conditions (8.4) and (9.6).

Remarks. J
(i) In the foregoing analysis the parameter d always appears in the l
product dk, and therefore it is tacit in our scaling that dk be small. 3
Thus eguations based on the capiliarity relation (9.4) are probably not

valid for problems involving large curvatures

(i1) The approximation (9.6), to terms of 0(d2) rather than O(d), is

[qFm = {L + RA(C, - C,) - Relv, (9.7)2

provided e is constant. This relation with the term ke omitted is common
in the literature. However, the terms Rh(C (" C2) and ke are both O(d),

and to neglect one without the other is inconsistent. In any event, since .
L=0(1), (9.6) seems to be the most rational approximation to use in :
conjunction with (9.4), except possibly when the temperature away from ]
the interface (for example at the boundary) is not close to Ty,

1Also, as Rogers [ 1983) has noted, the interfacial temperature as given by (9.4) can have negative
values for sufficiently large curvatures; in fact, for & > L/f(Ty). (CF. (i) of the remark following
(8.8).)

2¢t. wollkind [ 19791, who derives (9.7) assuming constant specific heats.
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1.:.3_:‘ 10. Quasi-linear theory.

e 10.1. Basic equations. Growth conditions.

i We now consider a model based the interface conditions (6.6), (9.4), and

. (9.6) in conjunction with assumptions of .constant specific heats C,>0 and

5; constant conductivities k0. Thus, writing
"_ :.

~,-‘ u=T-Ty,

b

;,;: we are led to the system

o

g

R Crr=kAu, q=-kgradu in B, (10.1)

'.~ u=-hk, (q)m =Lv on I, (10.2)

o
1 vmn =0 on 2I, (10.3)

®

S for all time. As before, we refer to u as the temperature. Also, in view

2 of (2.7) and (8.5), it is natural to suppose that

T-:\.

o) L0, h0. (10.9)
o~
S48 Remark. The system (6.18)-(6.20), or the simpier version (8.6)-(8.8),
:’3.{: have the advantage of being consistent with the first two laws. Therefore,
s for an isolated boundary these systems have a natural conservation law,
9 balance of energy, and a natural Liapunov function, the total entropy; and

oY simtlarly for an isolated boundary. Because of this we were able to obtain
'{:{2 estimates such as the bound (7.5) on interfacial area. On the other hand,
3‘:{2_ because of the approximations involved, the system (10.1)-(10.4) Is, in

el general, not consistent with the second law (5.3). Therefore, results such

\:N as the global growth conditions (7.3) and (7.4) and the area bound (7.5)
. i‘;: must be established anew.

)
:;}‘5 Our discusston of (10.1)-(10.4) 1s based on the following pair of
° identities:
8 . i
i -Lvol(B,)*- ZfCu* = [qn, (10.5) |
s B, » |
CH -hLarea(1)* - ZfuCu® = Lligradull,2 + qu n, (10.6) |
:v 8 |
-, |

o

2
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o ‘
.l where 1I1l, is the norm defined by
o
a LIIpII2 = K,fIpIZ + K,fIpI2. (10.7)
b
At To prove (10.5) and (10.6), note first that (4.3) with g the
'-,,,,;:, characteristic function for B,, (4.6), and (10.3) yield
'Q;t:w
ol
:”'“ area(Iy = [kv, vol(B,» = fv = - voI(B,) . (10.8)
ey 1 |
)
U Note also that
P
%3 Jagradu = - Lllgraduli 2 . (10.9)
RS B
By (10.1), (10.2), (10.8), (10.9), and (6.11),
R
3,;; ~-Lvoi(B,) = [[qlm = [gn + Z[Cu,
i ! » B, (10.10)
r .
Ua -hLarea(l¥ = fulqlm = -[q-gradu + fuqn + ZfuCye,
0% I B B B;
341 which yfeld (10.5) and (10.6).
L Equations (10.5) and (10.6) simplify when
S
238 C,=C, (10.11)
T2y
i') > Indeed, since u is continuous, (10.5) and (10.6) reduce to
ROCK A
i (voi(B,) + Cful* =-L'fqn, (10.12)
:...l 8 B
o
2 (harea(l) + (C/2)ju?)* = -ligradull 2 - L™ fuqn, (10.13)
— B »
B with
o
b C=C/L. (10.14)
o
i These identities and the-boundary conditions (7.1) and (7.2), with the
I
, -; latter written in the form (8.9), yield, as a consequence, the relations
" ;'-;; listed below; there V is the fofa/volume, while u_ = u_(t) isthe
L mean temperature:
I}
* N 1
&1 V=vol(B), wu = V'[u. (10.15)
s
Ot
o

“‘.}

COeeN, Yoy
}'r S “,:-P, $_,-s.,‘ t*"ﬁt

..... W laf'a.' D L

\)
:-‘i‘g:
.'.



2 A asal add aaia s s ailh-aus aif aah -l acs e ake ath ath ARA Stk Ut AR bA bbbl A

L1

)

2%

r Growth conditions. Assume that C, = C,

§ ; (1) For an isolated boundary,

': (vol(Bz) + CVum}' = 0, (10.16)

S (harea(l) - y_vol(B,) + (C/2)g(u-um)2]' $0. (10.17)

N

5 (i1) For an isothermal boundary,

) _ .

Y. (harea(I) - uyvol(B,) + (C/2)[(u-u,¥)* <O. (10.18)

% ’

S0y

A Proof. Consider first an isolated boundary. Then (10.12) and (10.13)

I reduce to (10.16) and

fo | | .

::; (harea(l) + (C/2)fu? )* = -ligraduli? . (10.19)

K B

> By (10.15),

S

% U (Jur = fu e =fty_u) - u -fu=(1/2)f(2(u ur - (u_2r), (10.20)
- B B B B B

o and if we muitiply (10.16) by u,, subtract the resulting equation from
Y A

52,: (10.19), and use (10.20) and the fact that gradu_ =0, we arrive at

ig (10.17). |

Z'). Consider next an isothermal boundary. Then multiplying (10.12) by u,

s and subtracting the result from (10.13), we conclude, with the aid of

:g (10.14), that (10.18) holds. O

0 Remark. In(10.17) and (10.18) the < O may be replaced by

® .

o = -ligrad(u-u )II2 < 0. (10.21)

Appropriate initial conditions for the system (10.1)-(10.3) are:

i LA

G A A

u(x,0) = go(x) for x in B, B,(0)=8,, (10.22)

with g, the initial temperature-distribution and (B,,,B,,) the initial

distribution of phases. We shall designate by Problem QL the
initial-value problem defined by the field equations (10.1), the

4@ PS8
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free-boundary conditions (10.2) and (10.3), the boundary conditions (7.1) or
(8.9), and the initial conditions (10.22).

Question.! What is an appropriate weak formulation of Probiem QL?

Since 0<volB,) sV, (10.16) ylelds abound for lu ()l which is

uniform in t, and this, with (10.17), yields bounds for area(I(t)) and for
the LZ(B) norm of u(t) = u(-,t); similar bounds follow from (10.18). Thus
the growth conditions have the following

Corollary. Assume that C,=C,. Then each solution of Problem QL has
(on its interval of existence)

area(l(t))  and Nt 2,

bounded uniformly in t by constants which depend only on the data?

Remark. The bound on area(l(t)) precludes the formation of an interface
which is too wild. This stability is a consequence of interfacial
free-energy, manifested in the constant h. (As h tends to zero, the bound
on area(I(t)) tends to infinity.)

The relations (10.16)-(10.18) can possibly be used as a basis for a
study of existence, uniqueness, and stability for Problem QL, as they yield
a-priori estimates for u and for the interface. Such a study, however, is
beyond the scope of this paper.

1¢r. Visintin [1984]), who - for & closely rolateil probiem - glves a weak formulation and establishes
lobal existence.

i.e.. only on B, C, h, ug (for an isothermai boundsry), and the initial dsta.
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10.2. Equilibrium in the quasi-linear theory. :
In this section we discuss the equilibrium behavior of solutions to ]
Problem QL, assuming throughout that

: C,=Cy

i Consider, then, a solution of QL and suppose that

-t 3 v v K

as t-+eo, anequilibrium state (u_,B ) exists.

1-’82-

Further, let u__ denote the corresponding mean temperature and I, the

corresponding interface, and let a
; E, = the initial-value of vol(B,) + CVu,, (10.23) 3
¢ g
¢ )
; A. Isolated boundary. )
‘ By (10.17) it seems reasonable to expect that
§ ¥
t A
) u, =constant =u__, :
1 5

and therefore, in view of (10.16) and (10.17), the equilibrium state should
be consistent with the variational probiem: . ”

minimize  hCVarea(l_) + vol(B_, }vol(B_,) - Ey). (10.24)

(In dertving (10.29), u_ was eliminated using the constraint equation

/ obtained from (10.16).) This problem is nonstandard, but easily solved. .
‘ Since hCV> 0, i (10.24) has aminimizer B_,, then (B_,,B_,) has 4]

minimal interface in the sense explained in the Appendix. In fact, solving
(10.24) 1s equivalent to findinga v in [0,V] that minimizes

v %
2 ,

v hCVa (V) + V(v - Ej). (10.25) 8.
¥ {
! |

. In view of the properties of a_. (v) expressed in Theorem | of the 3
' Appendix, (10.25) has a solution v, and the corresponding solution of M, '
. (cf. the Appendix) minimizes (10.24). In particular, for Ey> 2V, B_, =B; 3

for E, <O, B_, =@. Thus, granted the validity of (10.24), the equilibrium
configurations will have minimal interface, and hence the interface will

o ol an PN

AR A
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\ have constant mean curvature and meet aB orthogonally. Further, by
R (10.23), the fluid phase will ultimately disappear if the inftial

S mean-temperature is iow enough; the solid phase will disappear if the
o initial mean-temperature is high enough.

il B. Isothermal boundary. ,
. By (10.18), it seems reasonable fo expect that (B,_.,B,.) will solve

m% the variational problem:

mipimize  uvol(B,) + harea(l,,).

e This is the problem discussed under (B) of Section 8.2, and the 'concluslons
N are no different.
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11. Quasi-static theory.
11.1. Basic equations. Growth conditions.

A standard model for solidification is based on the system
(10.1)-(10.3) with

C,=C,=0,

and hence on the equations

Au=0, q = -kjgradu in B, (11.1)
u=-hk, I[glm=Lv on I, (11.2)
vmn=0 on 2L (11.3)

These equations, aithough simple, have several interesting consequences,
chief among tnem being the instability of the interface in certain
circumstances.!

We begin our discussion of this model by first noting the following
consequences of (10.16)-(10.18):

Growth conditions.
(1) For an /solated boundary the interfacial area decreases with time while
the phase volumes remain constant:

vol(B» =0, area(l)r<O. (11.49)
(1) For an isothermal boundary,
Uovol(B, > + harea(Iy < 0. (11.5)

Appropriate initial conditions for the system (11.1)- (11.3) are:

B|(0) = By, (11.6)

with (B,,,By,) the initial distribution of phases. We shall designate by

Problem MS the initfal-value problem defined by (11.1)-(11.3), (7.1) or
(8.9), and (11.6).

Question. What is an appropriate weak formulation of Problem MS?

IMullins and Sekerks [1963,1964). Ses aiso Wagner [1956).
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a3 As in Section 8.3, it is not difficult to extend our results for bounded
;:; B to situations in which B is all of space with one of the phase regions
8 bounded for all time (cf. (8.18)). In particular, we have the following

e Growth conditions for an unbounded body. lel B, be lhe bounded
5 phase region.

i (i) For the body isolated at infinity,

i vol(B,*=0, area(1y<0. (11.7)

) (11) For the boay Isothermal at infinity,

e (-1)*'y,vol(B,) + harea(l)*< 0. (11.8)

W Remark. In(11.4)and(11.5), respectively, the <0 may be replaced by

= -hlligradull;2 <0 and = -ligradull,? <O;

3 an analogous assertion applies to (11.7) and (11.8).
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K 11.2. Equilibrium in the quasi-static theory.
:'a% Consider a solution of Problem MS and suppose that
e as t-+oo, anequilibrium state (u,,B,,.B.,) exists.
{
e
ey A. Isolated boundary.
:- 1. B bounded.
e in view of (11.4), we expect that the equilibrium configuration should
r‘,g::: have minimal interfacial-area (as defined in the Appendix), and hence the
E::!;: equilibrium interface should have constant mean curvature and meet 9B
R orthogonally.

2. B unbounded.
Here, because of (11.7), the bounded phase region, at equilibrium,
i should have minimal surface-area when compared to other regions of equal
{ , volume. Granted this: the bounded phase region I's spherical at equilibrium.
RN

” B. Isothermal boundary.

27 Since (11.5) and (11.8) are the same as (8.12) and (8.20), the

3’} .variational problems describing equilibrium states in the current theory
A are exactly the same as those discussed in (B) of Section 8.2 and (B) of
Section 8.4, and the conclusions are the same. In particular, the assertions
in (B) of Section (8.4) concerning interfacial instabilities - such as those
exhibited by the prickly ball - are here fortified by the work of Mullins and
Sekerka [1963], who established interfacial instabilities for unbounded B
j when the bounded phase is an infinitesimal perturbation of a sphere.
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11.3. Quasi-static theory when one phase does not conduct heat.
% Suppose that one of the two phases, phase 2 say, is a poor conductor of
;:12; heat. If we model this by setting k, = O; then, as is clear from the

;2 derivation of (11.1) - (11.3), the temperature in phase 2 is indeterminate,
N while the temperature in phase 1 obeys the relations'

P AU=0 in B,,

%5 (11.9)

T =-hk, du/on=L,v on 9B,,

V) 7
\‘\ where, for convenience, we have assumed that the region B,(t) ‘occupied
‘\: by phase 1 is bounded, but that B itself is all of space. Here Ly=L/k,,
- while du/an is the outward normal derivative on 2B,.

P Using steps analogous to those used to derive (10.5) and (10.6), it is not
:’ difficult to verify that (11.9) yield the growth conditions:

iy vol(B,* =0, area(dB,)<0. (11.10)

®

3 Because of (11.10), one might expect solutions of (11.9) to stabilize at

Lo large time with B,(t) ultimately spherical.

g An appropriate initial condition for the system (11.9) is

;55;‘. B,(0) = B,,, (1)
s

% with By, the region occupied by phase 1 at t = 0.
o

, Remark. In this model only one phase enters the system (11.9), and the
*»;r* notions of supercooling and superheating are extraneous; for that reason
3-‘.; the instabilities discussed previously should not be encountered. This

“ conjecture is reinforced by (11.10) and, even more so, by work of Duchon
and Robert 1984}, who establish 1ocal existence and uniqueness for the
o problem (11.9), (11.11) in R2 with By, unbounded?

2% Acknowledgment. | would like to acknowledge numerous interesting and
) valuable discussions with F. Aimgren, J. Ockendon, W. Pritchard,

r} R. Sekerka, and W. Williams. The work presented here was supported by |
o) the Army Research Office and the National Science Foundation. |
®

:‘ 1¢r. Mullins [1960), who uses this system (with u concentration) to model corrosion.
9 2500 also Caroli, Caroli, Roulet, and Langer [1985], who study the existence of needle crystals using
o the system (11.9) (in 8 moving frame of reference).
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\ Appendix. Some variational probiems involving interfaces.
Let R be asufficiently nice subset of B, and let 1, denote the

‘%;: corresponding interface; that is, is the portion of aR contained in the
R Interior of B. Let

B

| V = vol(B),

i

.@j,: and, for each ve[0,V], consider the problem

'f' q" l

H“ M, minimize areally) subjectto vol(R)=v.

ey

i' Let a_ (v) denote the corresponding minimal area:

)

Wyl

- 3pn(V) = inf{ area(ty): vol(R) = v). (1)

‘oY ,

~r§ Theorem 1.! For each velO,V), M, has a solution, and for each solution
’::" Y the corresponding interface has constant mean curvature and meeéts b
"" orthogonally. IMoreover, a..(v) Iscontinuous on [0V, strictly positive

on (O,V), andzeroat v=0\V.

N For convenience, we say that a partition (R,B\R) has minimal

By - interface provided R solves M, for v = vol(R).
Eé% Let B3>0 and q20 be given. Consider the problem

()
L)

)
I 3 W, minimize areally) subject to Vol(R)+ Barea(ly) = q.
& Theorem 2.2
; *3 (i) For qsV, wq has a solution, and each solution R solves M, for
el some vélO,V].
'. : (it) For q> V, wq does not have a solution in the standard sense. If (Rn}
< Is a minimizing sequence with (1) the corresponding sequence of
Y s
R Interraces, then
I

ry voR) =V, Barea(l ) >q-V>0,

.

‘ 1

"' .
3:;:- So that B\Rn aoproaches a set with zero volume, but nonzero surface
\S area.
59‘ d

®
~:';i'
;:I:{; 1¢f.. Massari and Pepe [1974); Giusti [1981); Gonzalez, Massari, and Tamanini [ 1983 ); Gurtin [ 1985).
‘:}'z} 21his solution of Problem wq is due to F. Almgren (private communication).
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i Proof. We can clearly write 1, in the form

3 maximize VOlR) subject to Vvol(R) + Barea(ly) = q

X Thus, since

8 3, (VOIR)) < area(ty),

this motivates the problem

. maximize v subjectto v+a_ (V)<q, Ogv<V. (2)

¥ This problem clearly has a solution. For q< V, the solution v has
5 v+a..(v)=q, and it is not difficult to to verify that any solution R of
q

M, solves W, This yields assertion (i) of the theorem. For q> V, the
solution is v =V, and this yields assertion (ii). O
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Appendix. Scaling the quasi-linear theory. Discussion.

Insight into the approximations underlying the theories developed in
Sections 10 and 11 can be obtained with the aid of appropriate scalings.
Consider the length and time scales defined by

L= (T V/L,  ¢=E2/K Ty,

and replace the coordinates x and t by the dimensionless coordinates
x¥=x/l, t*=t/t.

Then, using the dimensionless temperature, curvature and velocity
ue=(T-T /T, R*=RL, Vv*=w/,

and the dimensionless parameters
d*=T,C/L,  K*=ky/k,, C*=C/C,

we can render (10.1)-(10.3) dimensionless; the result, with the
superscript * omitted, is

du =au inB,, dcu =kau  in B, (N
u=-k, (gradu, -kgraduJm=v on I, (2)
vmn=0 on dl. (3)

Here time derivatives are with respect to t*, spatial derivatives with
respect to x*; B, and 1 are appropriately scaled; and gradu; denotes

the limit of gradu as 1 is approached from B,

Remarks.
(i) The quasi-static theory studied in Section 11 follows, as a formal
approximation to (1)-(3), under the assumptions:

d<«c1, cd/k<«1,  k=001)

Thus the assumptions underlying the quasi-static theory are that the
specific heats C; be small compared to the ratio L/T,, and that the

order-of-magnitude of the conductivities k, and k, be equai.




0
PN L
N (11) The theory of Section 11.3 (for phase 2 a nonconductor of heat)
j;}':i; follows formatly from (1)-(2) under the assumptions:
\,, de«l, k<«
{r.,j
« (By (2), the second assumption renders the temperature in phase 2
o : irrelevant to the determination of the temperature in phase 1.) Thus this
.")_ theory is based on two assumptions: that the conductivity in phase 2 be
\% small compared to the conductivity in phase 1; that the specific heats C,
3 be small compared to the ratio L/TH.
e (1i1) The assumptions
P d=0(1), k<1
F:;.a
‘_::7 yield the following quasi-linear generalization of (11.9):
atiialy
.I. r
.§ du = Au in B,,
#..\, u=-k, mgradu,=v on aBI.
W |
AN (iv) Generally, the length scale [ will be very small. Thus the treatment
e with Q finite probably has physical relevance only when the maximum
ﬁ diameter of Q (before rescaling) is small, of a size comparable to the
Ry length scale L.
C')' (v) It might be that problems with O infinite - but not all of R® - are
»r*; important. Although we have not considered this case, it is clear that the
Q‘j basic results deduced in Section 6, as well as much of what we have
?‘;‘:;i established in other sections, remain valid for such 0.
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